本课题组主要从事布里渊光散射、磁振子-光子相互作用;磁性薄膜、多层膜材料的各向异性、高频磁特性和材料在GHz 频段的微波磁性测试方法等方面的研究。主要的研究方向如下:
本研究组同国内外众多知名研究组有长期紧密的学术合作和人才交流,欢迎读研究生或做本科生毕业设计、创新实验、基地项目等意向的同学主动联系加入我们,一起做有趣的研究!本研究组欢迎你的到来!
本课题组2024年计划招收1-2名博士生(已确定),2-3名硕士研究生(学硕本校本研贯通已招满,专硕尚有2个名额),欢迎物理学和微电子相关领域学生推免或者报考本课题组!!
2017年负责购置搭建布里渊光散射仪一台。主要从事高频磁性薄膜中的转动磁各向异性和磁振子光子相互作用性相关的研究工作。
主要从事抗电磁干扰软磁薄膜的电磁匹配研究(国家自然科学基金委青年基金项目)。
这段时间主要研究了CoFeBSm薄膜中的转动各向异性以及利用其调控材料的高频磁性。在期间参与了C.K.Ong教授研究组微波近场扫描成像系统(NSMM)设备的搭建。
主要研究了NiZn铁氧体掺杂CoFe薄膜中的转动各向异性以及其产生机理。期间学习了C.K.Ong教授课题组内的光子晶体测试平台的使用。
在薛德胜教授指导下完成了6年的硕博连读研究工作,毕业论文题目为《异质结构软磁材料的高频磁特性研究》,获得了凝聚态物理专业理学博士学位。
期间就读于兰州大学物理科学与技术学院物理学国家基地班,2006年06月获得物理学(磁学)理学学士学位。
期间就读于邢台市第一中学。
16. Xiling Li, Yuping Yao, Fusheng Ma, Jianbo Wang, Guozhi Chai, Mode transformation of dynamic spin wave well modes in the magnetic stripes, Applied Physics Letters, 124: 062408 2024.
15. Keke Ma, Chaozhong Li, Zhenhui Hao, C. K. Ong, Guozhi Chai, Strong magnon-magnon coupling between ferromagnetic resonances in Co90Zr10/Ta/Fe20Ni80 multilayers, Physical Review B, 108:094422 2023.
14. C. Q. Liu, Y. B. Zhang, G. Z. Chai, Y. Z. Wu, Large anisotropic Dzyaloshinskii-Moriya interaction in CoFeB(211)/Pt(110) films, Applied Physics Letters, 118:262410 2021.
13. Yongzhang Shi, Chi Zhang, Changjun Jiang, C. K.Ong, Guozhi Chai, Mirror symmetric nonreciprocity and circular transmission in cavity magnonics, Applied Physics Letters, 119: 132403 2021.
12. Wenjie Song, Xiansi Wang, Chenglong Jia, Xiangrong Wang, Changjun Jiang, Desheng Xue, Guozhi Chai, Nonreciprocal emergence of hybridized magnons in magnetic thin films. Phys. Rev. B, 104: 014402, 2021.
11. Chi Zhang, Chenglong Jia, Yongzhang Shi, Changjun Jiang, Desheng Xue, C. K. Ong, and Guozhi Chai, Nonreciprocal multimode and indirect couplings in cavity magnonics. Phys. Rev. B, 103: 184427, 2021.
10. Wenjie Song, Xiansi Wang, Wenfeng Wang, Changjun Jiang, Xiangrong Wang, Guozhi Chai, Backward Magnetostatic Surface Spin Waves in Coupled Co/FeNi Bilayers. physica status solidi (RRL)–Rapid Research Letters, 14: 2000118, 2020.
9. Chi Zhang, Yongzhang Shi, Weihua Zhang, Changjun Jiang and Guozhi Chai, Ultra-strong magnon-photon coupling induced in the photonic crystals with an YGaGeIG defect. Applied Physics Letters, 115(2): 022407, 2019.
8. Wenqiang Wang, Pingping Li, Cuimei Cao, Fufu Liu, Rujun Tang, Guozhi Chai and Changjun Jiang, Temperature dependence of interlayer exchange coupling and Gilbert damping in synthetic antiferromagnetic trilayers investigated using broadband ferromagnetic resonance. Applied Physics Letters, 113(2): 042401, 2018.
7. Dongshan Zhang, Wenjie Song and Guozhi Chai, Spin-wave magnon-polaritons in a split-ring resonator/single-crystalline YIG system. J. Phys. D: Appl. Phys. 50, 205003 (2017).
6. Chengyi Li, Guozhi Chai*, Chengcheng Yang, Wenfeng Wang and Desheng Xue. Tunable Zero-Field Ferromagnetic Resonance Frequency from S to X Band in Oblique Deposited CoFeB Thin Films. Scientific Reports, 5: 17023, 2015.
5. Guozhi Chai*, Nguyen N. Phuoc, and C. K. Ong, Angular tunable zero-field ferromagnetic resonance frequency in oblique sputtered CoFeBSm thin films. Applied Physics Express 7(6): 063001-4, 2014.
4. Guozhi Chai*, Nguyen N. Phuoc, and C. K. Ong. High thermal stability of zero-field ferromagnetic resonance above 5 GHz in ferrite-doped CoFe thin films. Applied Physics Letters, 103(4): 042412-5, 2013.
3. Guozhi Chai, Nguyen N. Phuoc, and C. K. Ong*, Exchange coupling driven omnidirectional rotatable anisotropy in ferrite doped CoFe thin film. Scientific Reports. 2: 832-5, 2012.
2. Guozhi Chai, Yuancai Yang, Jingyi Zhu, Min Lin, Wenbo Sui, Dangwei Guo, Xiling Li, and Desheng Xue*. Adjust the resonance frequency of (Co90Nb10/Ta)n multilayers from 1.4 to 6.5 GHz by controlling the thickness of Ta interlayers. Applied Physics Letters, 96(1): 012505-3, 2010.
1. Guozhi Chai, Desheng Xue*, Xiaolong Fan, Xiling Li, and Dangwei Guo. Extending the Snoek’s limit of single layer film in (Co96Zr4/Cu)n multilayers. Applied Physics Letters, 93(15):152516, 2008.
主持各类项目累计11项,其中甘肃省杰出青年基金1项,国家自然科学基金4项。
在本工作中利用双层膜中的边界条件不对称在坡莫合金薄膜中实现了群速度为负的表面自旋波,即后向表面波。论文发表在Phys. Status Solidi RRL 2020, 2000118。
本人在具有单轴各向异性的高频磁性薄膜方面的研究主要有:在CoZr/Cu多层膜中提高了材料的Snoek极限[APL 93,152516];在CoNb/Ta多层膜中利用层间交换作用调控了薄膜的各向异性和共振频率[APL, 96, 012505],并在其他体系中验证了该方法的普适性[IEEE Magn, 47, 3115, JAP 117, 063901, J. Alloy. Compd., 584, 171];在CoFeB薄膜中实现了共振频率的大范围调控[Sci Rep, 5, 17023];在CoFe(NiZnFeO)符合薄膜中诱导出了各向异性并得到了好的高频磁性[JPD 42, 205006],利用多铁材料的电场调控实现了共振频率的调控[APL, 114, 112402];利用三明治结构薄膜实现了GHz频段内各向同性的高磁导率和高共振频率[Sci. Rep. 6, 21327, 授权国家发明专利 ZL 201510393656.9]。
随后在具有可转动磁各向异性的高频薄膜体系中进行了如下研究:在具有条纹畴结构的FeCo 基薄膜中可以将具有条纹畴结构的铁磁薄膜的可转动各向异性场提高到200-300 Oe,相应的共振频率可以高于5GHz [APL, 103, 042412,JPD 46, 415001]。在不具有交换偏置作用的FeNi/FeMn双层膜中发现了其转动各向异性大于单轴各向异性的特点从而实现了面内类各向同性的高频高磁导率[JPD 50, 365003]。在铁磁/亚铁磁颗粒膜中可以诱导出更高的可转动磁各向异性,可以达到200-300Oe。相应的自然共振频率可以达到4.5GHz以上[Sci. Rep. 2, 832]。在Fe4N单层膜中发现了大的可转动各向异性[J alloy Compd 777, 1191]。结合单轴各向异性的特点和可转动磁各向异性,在单层膜材料中实现了不同角度下具有不同共振频率和磁导率的功能性高频薄膜[Appl. Phys. Express 7, 063001]。
在最近研究了异质结构薄膜中的非一致共振现象,例如在Co/FeNi双层膜中研究了光学支共振随层间交换作用的变化关系[JPD 50, 365003];在FeNi/Ru/FeNi人工反铁磁结构中研究了温度对高频阻尼的影响[APL 113, 042401];在条纹畴结构CoZr薄膜中研究了非一致共振和畴间交换作用的关系[JPD 51 285004]。
We performed an investigation of the static and high frequency magnetic
properties for oblique sputtered CoFeB thin films. The static magnetic results revealed that oblique
sputtered CoFeB thin films possess well defined in-plane uniaxial magnetic anisotropy, which
increases monotonically from 50.1 to 608.8 Oe with the increasing of deposition angle from 10° to
70°. Continuous modification of the resonance frequency of CoFeB thin films in a range of
2.83–9.71 GHz (covers three microwave bands including S, C and X bands) has been achieved.
16. Xiling Li, Yuping Yao, Fusheng Ma, Jianbo Wang, Guozhi Chai, Mode transformation of dynamic spin wave well modes in the magnetic stripes, Applied Physics Letters, 124: 062408 2024.
15. Keke Ma, Chaozhong Li, Zhenhui Hao, C. K. Ong, Guozhi Chai, Strong magnon-magnon coupling between ferromagnetic resonances in Co90Zr10/Ta/Fe20Ni80 multilayers, Physical Review B, 108:094422 2023.
14. C. Q. Liu, Y. B. Zhang, G. Z. Chai, Y. Z. Wu, Large anisotropic Dzyaloshinskii-Moriya interaction in CoFeB(211)/Pt(110) films, Applied Physics Letters, 118:262410 2021.
13. Yongzhang Shi, Chi Zhang, Changjun Jiang, C. K.Ong, Guozhi Chai, Mirror symmetric nonreciprocity and circular transmission in cavity magnonics, Applied Physics Letters, 119: 132403 2021.
12. Wenjie Song, Xiansi Wang, Chenglong Jia, Xiangrong Wang, Changjun Jiang, Desheng Xue, Guozhi Chai, Nonreciprocal emergence of hybridized magnons in magnetic thin films. Phys. Rev. B, 104: 014402, 2021.
11. Chi Zhang, Chenglong Jia, Yongzhang Shi, Changjun Jiang, Desheng Xue, C. K. Ong, and Guozhi Chai, Nonreciprocal multimode and indirect couplings in cavity magnonics. Phys. Rev. B, 103: 184427, 2021.
10. Wenjie Song, Xiansi Wang, Wenfeng Wang, Changjun Jiang, Xiangrong Wang, Guozhi Chai, Backward Magnetostatic Surface Spin Waves in Coupled Co/FeNi Bilayers. physica status solidi (RRL)–Rapid Research Letters, 14: 2000118, 2020.
9. Chi Zhang, Yongzhang Shi, Weihua Zhang, Changjun Jiang and Guozhi Chai, Ultra-strong magnon-photon coupling induced in the photonic crystals with an YGaGeIG defect. Applied Physics Letters, 115(2): 022407, 2019.
8. Wenqiang Wang, Pingping Li, Cuimei Cao, Fufu Liu, Rujun Tang, Guozhi Chai and Changjun Jiang, Temperature dependence of interlayer exchange coupling and Gilbert damping in synthetic antiferromagnetic trilayers investigated using broadband ferromagnetic resonance. Applied Physics Letters, 113(2): 042401, 2018.
7. Dongshan Zhang, Wenjie Song and Guozhi Chai, Spin-wave magnon-polaritons in a split-ring resonator/single-crystalline YIG system. J. Phys. D: Appl. Phys. 50, 205003 (2017).
6. Chengyi Li, Guozhi Chai*, Chengcheng Yang, Wenfeng Wang and Desheng Xue. Tunable Zero-Field Ferromagnetic Resonance Frequency from S to X Band in Oblique Deposited CoFeB Thin Films. Scientific Reports, 5: 17023, 2015.
5. Guozhi Chai*, Nguyen N. Phuoc, and C. K. Ong, Angular tunable zero-field ferromagnetic resonance frequency in oblique sputtered CoFeBSm thin films. Applied Physics Express 7(6): 063001-4, 2014.
4. Guozhi Chai*, Nguyen N. Phuoc, and C. K. Ong. High thermal stability of zero-field ferromagnetic resonance above 5 GHz in ferrite-doped CoFe thin films. Applied Physics Letters, 103(4): 042412-5, 2013.
3. Guozhi Chai, Nguyen N. Phuoc, and C. K. Ong*, Exchange coupling driven omnidirectional rotatable anisotropy in ferrite doped CoFe thin film. Scientific Reports. 2: 832-5, 2012.
2. Guozhi Chai, Yuancai Yang, Jingyi Zhu, Min Lin, Wenbo Sui, Dangwei Guo, Xiling Li, and Desheng Xue*. Adjust the resonance frequency of (Co90Nb10/Ta)n multilayers from 1.4 to 6.5 GHz by controlling the thickness of Ta interlayers. Applied Physics Letters, 96(1): 012505-3, 2010.
1. Guozhi Chai, Desheng Xue*, Xiaolong Fan, Xiling Li, and Dangwei Guo. Extending the Snoek’s limit of single layer film in (Co96Zr4/Cu)n multilayers. Applied Physics Letters, 93(15):152516, 2008.
3. Feng X, Bai H, Fan X, Guo M, Zhang Z, Chai G, Wang T, Xue D, Song C and Fan X, Incommensurate Spin Density Wave in Antiferromagnetic RuO2 Evinced by Abnormal Spin Splitting Torque. 2024 Physical Review Letters 132 086701
2. Li X, Yao Y, Ma F, Wang J and Chai G, Mode transformation of dynamic spin wave well modes in the magnetic stripes. 2024 Applied Physics Letters 124 062408
1. Wang Y, Zhang Y, Li C, Wei J, He B, Xu H, Xia J, Luo X, Li J, Dong J, He W, Yan Z, Yang W, Ma F, Chai G, Yan P, Wan C, Han X and Yu G, Ultrastrong to nearly deep-strong magnon-magnon coupling with a high degree of freedom in synthetic antiferromagnets. 2024 Nature communications 15 2077
4. Ma K, Li C, Hao Z, Ong C K and Chai G, Strong magnon-magnon coupling between ferromagnetic resonances in Co90Zr10/Ta/Fe20Ni80 multilayers. 2023 Physical Review B 108 094422
3. Meng D, Chen S, Ren C, Li J, Lan G, Li C, Liu Y, Su Y, Yu G, Chai G, Xiong R, Zhao W, Yang G and Liang S, Field-Free Spin-Orbit Torque Driven Perpendicular Magnetization Switching of Ferrimagnetic Layer Based on Noncollinear Antiferromagnetic Spin Source. 2023 Advanced Electronic Materials 2300665
2. Wang J, Li M, Li C, Tang R, Si M, Chai G, Yao J, Jia C and Jiang C, Piezostrain-controlled magnetization compensation temperature in ferrimagnetic GdFeCo alloy films. 2023 Physical Review B 107 184424
1. Wang Z, Wang D, Liu L, Jiang S, Chai G, Cao J and Xing G, Tilted magnetic anisotropy-tailored spin torque nano-oscillators for neuromorphic computing. 2023 Applied Physics Letters 123 204101
9. Che J, Zhang X, Zhang W, Dietz B and Chai G, Fluctuation properties of the eigenfrequencies and scattering matrix of closed and open unidirectional graphs with chaotic wave dynamics. 2022 Physical Review E 106 014211
8. Fu S, Xue K, Chai G, Xu Y, Shang T, Cheng W, Jiang D and Zhan Q, Positive stretching dependence of resonance frequency in CoFeB films modulated by lateral growth pre-strain. 2022 Journal of Alloys and Compounds 926 166955
7. Jin Y, Tian Y, Wu H, Zhang Y, Li C, Liu F, Chai G and Jiang C, Magnon dynamics during phase transitions in FeRh by Brillouin light scattering. 2022 Journal of Physics D-Applied Physics 55 355301
6. Li X, Qiao L, Shi H, Chai G, Wang T and Wang J, Temperature denpendent microwave absorption properties of SrFe12O19 in X-band. 2022 Frontiers in Materials 9 1054725
5. Miao P-X, Wang T, Shi Y-C, Gao C-X, Cai Z-W, Chai G-Z, Chen D-Y and Wang J-B, Measurement of coercivity of soft magnetic materials in open magnetic circuit by pump-probe rubidium atomic magnetometer. 2022 Acta Physica Sinica 71 244206
4. Wang J, Li C, Tang R, Chai G, Yao J and Jiang C, Spin-orbit torque in a single ferrimagnetic GdFeCo layer near the compensation temperature. 2022 Applied Physics Letters 120 102402
3. Zhang C, Zhang S, Ma T, Chai G and Wang T, Improvement of high-frequency magnetic properties in antiferromagnetic coupling trilayers by easy-plane magnetocrystalline anisotropy. 2022 Journal of Magnetism and Magnetic Materials 561 169708
2. Zhang Q, Liang J, Bi K, Zhao L, Bai H, Cui Q, Zhou H-A, Bai H, Feng H, Song W, Chai G, Gladii O, Schultheiss H, Zhu T, Zhang J, Peng Y, Yang H and Jiang W, Quantifying the Dzyaloshinskii-Moriya Interaction Induced by the Bulk Magnetic Asymmetry. 2022 Physical Review Letters 128 167202
1. Zhang Y, Kong X, Xu G, Jin Y, Jiang C and Chai G, Direct observation of the temperature dependence of the Dzyaloshinskii-Moriya interaction. 2022 Journal of Physics D-Applied Physics 55 195304
1. Cao C, Chen S, Song W, Zhu X, Hu S, Qiu X, Chai G, Sun L, Cheng W, Jiang D and Zhan Q, Spin-orbit torque and Dzyaloshinskii-Moriya interaction in 4d metal Rh-based magnetic heterostructures. 2021 Applied Physics Letters 118 112402
2. Che J, Lu J, Zhang X, Dietz B and Chai G, Missing-level statistics in classically chaotic quantum systems with symplectic symmetry. 2021 Physical Review E 103 042212
3. Huang M, Gao L, Zhang Y, Lei X, Hu G, Xiang J, Zeng H, Fu X, Zhang Z, Chai G, Peng Y, Lu Y, Du H, Chen G, Zang J and Xiang B, Possible Topological Hall Effect above Room Temperature in Layered Cr1.2Te2 Ferromagnet. 2021 Nano Letters 21 4280
4. Kang C, Wang T, Jiang C, Chen K and Chai G, Investigation of the giant magneto-impedance effect of single crystalline YIG based on the ferromagnetic resonance effect. 2021 Journal of Alloys and Compounds 865 158903
5. Li C-Z, Jiang C-J and Chai G-Z, Angular control of multi-mode resonance frequencies in obliquely deposited CoZr thin films with rotatable stripe domains. 2021 Chinese Physics B 30 037502
6. Liu C Q, Zhang Y B, Chai G Z and Wu Y Z, Large anisotropic Dzyaloshinskii-Moriya interaction in CoFeB(211)/Pt(110) films. 2021 Applied Physics Letters 118 262410
7. Liu F, Zhou C, Tang R, Chai G and Jiang C, Continuously Controllable Charge-Spin Conversion by Electric Fields in FeNi/Pt/Pb(Mg1/3Nb2/3)O3-Pb0.7Ti0.3O3 Heterostructures. 2021 Physica Status Solidi-Rapid Research Letters 15 2100342
8. Liu F, Zhou C, Tang R, Chai G and Jiang C, Controllable charge-spin conversion by Rashba-Edelstein effect at Cu/Ta interface. 2021 Journal of Magnetism and Magnetic Materials 540 168462
9. Liu J, Chen J, Zhang Y, Fu S, Chai G, Cao C, Zhu X, Guo Y, Cheng W, Jiang D, Zhao Z and Zhan Q, Stretching-Tunable High-Frequency Magnetic Properties of Wrinkled CoFeB Films Grown on PDMS. 2021 ACS Applied Materials & Interfaces 13 29975
10. Liu X, Song W, Wu M, Yang Y, Yang Y, Lu P, Tian Y, Sun Y, Lu J, Wang J, Yan D, Shi Y, Sun N X, Sun Y, Gao P, Shen K, Chai G, Kou S, Nan C-W and Zhang J, Magnetoelectric phase transition driven by interfacial-engineered Dzyaloshinskii-Moriya interaction. 2021 Nature Communications 12 5453
11. Shi Y, Zhang C, Jiang C, Ong C K and Chai G, Mirror symmetric nonreciprocity and circular transmission in cavity magnonics. 2021 Applied Physics Letters 119 132403
12. Song W, Wang X, Jia C, Wang X, Jiang C, Xue D and Chai G, Nonreciprocal emergence of hybridized magnons in magnetic thin films. 2021 Physical Review B 104 014402
13. Wang J, Li C, Ma L, Liu F, Chai G and Jiang C, Nonvolatile electric-field-controlled anomalous Hall effect in ferrimagnetic GdFeCo film. 2021 Journal of Physics D-Applied Physics 54 075001
14. Wang J, Li C, Wang Y, Tang R, Chai G and Jiang C, Giant modulation of magnetic compensation temperature in ferrimagnetic GdFeCo alloys by oblique sputtering. 2021 Applied Surface Science 567 150527
15. Wang Y, Li C, Zhou H, Wang J, Chai G and Jiang C, Unusual anomalous Hall effect in the ferrimagnetic GdFeCo alloy. 2021 Applied Physics Letters 118 071902
16. Zhang B, Wu L, Feng X, Wang D, Chi X, Chai G, Yang P, Ding J, Han J, Chen J, Zhu Y and Chow G M, Re-entrance to a ferromagnetic insulator with oxygen-vacancy ordering in the La0.7Sr0.3MnO3/SrTiO3 superlattice. 2021 Journal of Materials Chemistry A 9 26717
1. Gao, Yang; Tian, Yinhua; Zhang, Yabing; Chai, Guozhi*; Study of the intensity asymmetry in Brillouin light scattering from magnons in FeNi thin films, Journal of Magnetism and Magnetic Materials, 2020, 504: 166671.
2. Qi, Ji; Dong, Baojuan; Zhang, Zhe; Zhang, Zhao; Chen, Yanna; Zhang, Qiang; Danilkin, Sergey; Chen, Xi; He, Jiaming; Fu, Liangwei; Jiang, Xiaoming; Chai, Guozhi; Hiroi, Satoshi; Ohara, Koji; Zhang, Zongteng; Ren, Weijun; Yang, Teng; Zhou, Jianshi; Osami, Sakata; He, Jiaqing; Yu, Dehong*; Li, Bing*; Zhang, Zhidong; Dimer rattling mode induced low thermal conductivity in an excellent acoustic conductor., Nature Communications, 2020, 11(1): 5197.
3. Zhang, Wanling; Zhang, Jiaming; Wu, Peng; Chai, Guozhi; Huang, Ran; Ma, Fei; Xu, Fangfang; Cheng, Hongwei; Chen, Yonghui; Ni, Xia; Qiao, Liang; Duan, Jinglai; Parallel Aligned Nickel Nanocone Arrays for Multiband Microwave Absorption., ACS Appl Mater Interfaces, 2020, 12(20): 23340-23346.
4. Song, Wenjie; Wang, Xiansi; Wang, Wenfeng; Jiang, Changjun; Wang, Xiangrong; Chai, Guozhi; Backward Magnetostatic Surface Spin Waves in Coupled Co/FeNi Bilayers, Physica Status Solidi-Rapid Research Letters, 2020, 14(8): 2000118.
1. Zhang, Runzu; Zhang, Weihua; Dietz, Barbara*; Chai, Guozhi; Huang, Liang; Experimental investigation of the fluctuations in nonchaotic scattering in microwave billiards, Chinese Physics B, 2019, 28(10): 100502.
2. Wang, Tao; Kang, Chen; Chai, Guozhi*; Low-Frequency Noise Evaluation on a Commercial Magnetoimpedance Sensor at Submillihertz Frequencies for Space Magnetic Field Detection., Sensors (Switzerland), 2019, 19(22).
3. Pan, Lulu; Wang, Wenfeng; Wang, Wentao; Zhang, Peng; Xi, Li; Chai, Guozhi*; Xue, Desheng*; Rotatable anisotropy in Fe4N thin film with quasi-single magnetic domain, Journal of Alloys and Compounds, 2019, 777: 1191-1196.
4. Cao, Cuimei; Shen, Lvkang; Chen, Shiwei; Yang, Kunya; Lan, Guohua; Li, Pingping; Wang, Wenqiang; Liu, Ming; Chai, Guozhi*; Jiang, Changjun*; Reciprocal-space-resolved piezoelectric control of non-volatile magnetism in epitaxial LiFe5O8film on Pb(Mg1/3Nb2/3)0.7Ti0.3O3substrate, Applied Physics Letters, 2019, 114(11): 112402.
5. Wang, Yangping; Liu, Fufu; Cao, Cuimei; Zhou, Cai*; Chai, Guozhi; Jiang, Changjun*; Ionic-liquid gating controls anomalous hall resistivity of Co/Pt perpendicular magnetic anisotropy films, Journal of Magnetism and Magnetic Materials, 2019, 491: 165626.
6. Zhang, Chi; Shi, Yongzhang; Zhang, Weihua; Jiang, Changjun; Chai, Guozhi*; Ultra-strong magnon-photon coupling induced in the photonic crystals with an YGaGeIG defect, Applied Physics Letters, 2019, 115(2): 022407.
7. Shi, Yongzhang; Zhang, Dongshan; Zhang, Chi; Jiang, Changjun; Chai, Guozhi*; Control of photon-magnon coupling with a nonuniform microwave magnetic field, Journal of Physics D: Applied Physics, 2019, 52(30): 305003.
8. Li, Xi Ling; Wang, Jian Bo; Chai, Guo Zhi*; Techniques of microwave permeability characterization for thin films, Chinese Physics B, 2019, 28(9): 097504.
9. 柴国志; 黄亮; 乔亮; 张冠茂; 星上剩磁对惯性传感器的影响, 中国光学, 2019, 12(3): 515-525.
1. Huige Ma, Chengyi Li, Wenfeng Wang and Guozhi Chai1, Thickness-dependent resonance frequency of non-uniform procession mode in CoZr stripe-domain magnetic films. J. Phys. D: Appl. Phys. 51, 285004 (2018).
2. Wenqiang Wang, Pingping Li, Cuimei Cao, Fufu Liu, Rujun Tang, Guozhi Chai, and Changjun Jiang, Temperature dependence of interlayer exchange coupling and Gilbert damping in synthetic antiferromagnetic trilayers investigated using broadband ferromagnetic resonance. Applied Physics Letters. 113, 042401 (2018).
3. Cunxu,Gao ; Yu,Miao ;Yutian,Wang ; Guozhi ,Chai,;Peng,Chen, ; Desheng,Xue, Interface-induced spiral magnetic structure of epitaxial Fe films on GaAs(001). Aip Advances. 8, 125026 (2018).
1. Wenfeng Wang, Guozhi Chai and Desheng Xue, Omnidirectional zero-field ferromagnetic resonance driven by rotatable anisotropy in FeNi/FeMn bilayers without exchange bias. Sci Rep. 7, 1341 (2017).
2. Dongshan Zhang, Wenjie Song and Guozhi Chai, Spin-wave magnon-polaritons in a split-ring resonator/single-crystalline YIG system. J. Phys. D: Appl. Phys. 50, 205003 (2017).
3. Wenfeng Wang, Guozhi Chai* and Desheng Xue*, Thickness dependent optical mode ferromagnetic resonance in Co/FeNi bilayer. J. .Phys. D: Appl. Phys. 50, 365003 (2017)
4. Xiling Li, Chengyi Li, Guozhi Chai*, Temperature dependence of dynamical permeability characterization of magnetic thin films using shorted microstrip line probe , Measurement Science and Technology, 28, 115104 (2017)
8.2019年下半年每周三上午8:30在齐云楼620开小组讨论会,欢迎感兴趣的同学来听;
7.2019年上半年每周四上午8:30在齐云楼620开小组讨论会,欢迎感兴趣的同学来听;
6.2018年上半年每周四上午9:00在齐云楼620开小组讨论会,欢迎感兴趣的同学来听;
5.2017年下半年每周四上午9:00在齐云楼620开小组讨论会,欢迎感兴趣的同学来听;
4.2017年上半年每周四上午9:00在齐云楼620开小组讨论会,欢迎感兴趣的同学来听;
3.2016年下半年每周二晚上6:30在齐云楼620开小组讨论会,欢迎感兴趣的同学来听;
2.2016年上半年每周五下午2:30在齐云楼620开小组讨论会,欢迎感兴趣的同学来听;
1.每周讨论会讨论1篇文献;
9.2019年3月小组成员和蒋长军老师组工作总结后聚餐
8.2018年6月小组聚餐欢送张栋山
7.2017年9月小组聚餐
6.2017年6月20日小组聚餐庆祝李成毅毕业
5.2017年2月16日小组新年聚餐
4.2016年11月06日小组聚餐庆祝李成毅获得国家奖学金
3.2016年9月17日小组爬兰山活动
2.2016年9月10日教师节小组聚餐
1.2016年5月榆中官滩沟春游
诚邀国内外优秀青年研究人员、博士后、应届博士毕业生加入本课题组!
本课题组依托兰州大学磁学与磁性材料教育部实验室,以国家青年人才计划入选者柴国志教授为课题负责人,团队目前有兼聘外籍教授1名,工程师1名。主要研究内容如下:
基础研究:主要围绕微波矢量网络分析仪和布里渊光散射两个设备,结合低温超导磁体微波探针台、自主搭建Locked-in FMR、室温孔超导磁体和近场光学显微镜等开展磁性材料的高频动力学相关研究。目前的主要研究方向为:磁振子-微波光子耦合中的非厄米系统基本物理、耦合强度调控、非互易行为;自旋波动力学中的自旋波非互易、磁振子-磁振子耦合和非共线磁结构中自旋波的色散关系;自旋电子学输运测试结合微波测试研究自旋波的传输和调制。
应用研究: 面向国家重大需求,结合高频磁性材料和高频磁动力学开展磁功能器件研究。主要集中在磁场传感器、微波非互易器件等方面。
招聘岗位:
教授/研究员、副教授/副研究员、青年研究员、萃英博士后
基本要求:
具有优秀的工作基础和较大发展潜力,与课题组研究方向相关,有事业心和责任感,有与课题组共同进步的强烈意愿。
具体条件和待遇请参考:物理科学与技术学院招聘公告。
联系方式:
请将简历发送至:柴国志,chaigzh@lzu.edu.cn
1.磁传感器测试标定方法
2.磁传感器电路设计
3.磁性微丝反磁化动力学过程模拟
4.磁传感器噪声分析模型研究
5.巨磁阻抗效应
6.微波近场显微测试
7.巨磁阻抗传感器研制
本页提供和本课题组有合作的研究组网站链接地址.
如果您对课题组研究工作或网页建设有任何建议或意见,请不吝赐教。非常感谢!!
Copyright © 柴国志 教授研究组,磁学与磁性材料教育部重点实验室,兰州大学
地址:甘肃省兰州市天水南路222号,兰州大学理工楼1301室,邮编:730000 Email: chaigzh(a)lzu.edu.cn